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CHAPTER 9
RULE-BASED EXPERT SYSTEMS

George F. Luger and William A. Stubblefield
Department of Computer Science
University of New Mexico, Albuquerque

The first principle of knowledge engineering is that the problem solving power
exhibited by an intelligent agent's performance Is primarily the consequeitce of its
knowledge base, and only secondarily a consequence of the inference method employed.
Expert systems must be knowledge-rich even if they are methods-poor. This is an
important result and one that has only recently become well understood in Al. For a long
time Al has focused its attentions almost exclusively on the development of clever
inference methods; almost any inference method will do. The power resides in the
knowledge.

Epward FEIGENBAUM, Stanford University

I hate to criticize, Dr. Davis, but did you know that most rules about what the
category of an organism might be that mention:
the site of a culture and
the infection
also mention:
the portal of entry of the organism?
Shafl I try o ime a'ciegstnoncaut. foy this?

Trrestas program helping a Stanford physician improve MYCIN knowledge base

An expert system is a knowledge-based program that provides “expert-quality’” solutions
to problems in a specific domain. Generally, its knowledge is extracted from human
expetts in the domain, and it attempts to emulate their methodology and performance. As
with skilled humans, expert systems tend to be specialists, focusing on a narow set of
aroblems. Also, like humans, their knowledge is both theoretical and practical, having
~een perfected through experience in the domain. Unlike a human being, however,
surrent programs cannot learn from their own expetience; their knowledge must be ex-
~cacted from humans and encoded in a formal language. This is a major task facing
sxpert-system builders.

Expert systems should not be confused with cognitive modeling programs, which

amempt to simulate human mental architecture in detail. Bxpert systems neither copy the

e
This chapter is adapted from George F. Luger and William A, Stubblefield, Artificial Intelligence and the
Zesign of Expert Systems. Palo Alto, Calif.: Benjamin Curnmings, 1989, with permission.
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9.2 COMPUTER ENGINEERING HANDBOOK

structure of the human mind nor are mechanisms for general intelligence. They are
practical programs that use heuristic strategies developed by humans to solve specific
~ classes of problems,
Because of the heuristic, knowledge-intensive nature of expert-level problem solving.
expert systems are generally

1. Open to inspection, both in presenting intermediate steps and in answering questions
about the solution process

2. Easily modified, in both adding and deleting skills from the knowledge base
3. Heuristic, in using (often imperfect) knowledge to obtain solutions

An expert system is ‘‘open to inspection’’ in that the user may, at any time during
program execution, inspect the state of its reasoning and determine the specific choices
and decisions that the program is making. There are several reasons why this is desirable.
First, if human experts such as doctors or engineers are to accept a recommendation from
the computer, they must be satisfied the solution is correct. **The computer did it” is not
sufficient reason to follow its advice. Indeed, few human experts will accept advice from
another human without understanding the reasons for that advice. This need to have
answers explained is more than mistrust on the part of users; explanations help people
relate the advice to their existing understanding of the domain and apply it in a more
confident and flexible manner.

Second, when a solution is open to inspection, we can evaluate every aspect and
decision taken during the solution process, allowing for partial agreement and the addition
of new information or rules to improve performance. This plays an essential role in the
refinement of a knowledge base.

The exploratory nature of artificial intelligence (Al) and expert system programming
requires that programs be easily prototyped, tested, and changed. These abilities are
supported by Al programming languages and environments and the use of good program-
ming techniques by the designer. In a pure production system, e.g., the modification of
a single rule has no global syntactic side effects. Rules may be added or removed without
requiring further changes to the larger program. Expert-system designers have commented
that easy modification of the knowledge base is a major factor in producing a successful
program [17]. '

Third, expert systems use heuristic problem-solving methods. As expert-system de-
signers have discovered, informal tricks of the trade and rules of thumb are often more
important than the standard theory presented in textbooks and classes. Sometimes these
rules augment theoretical knowledge; occasionally they are simply shortcuts that seem
unrelated to the theory but have been shown to work.

The heuristic nature of expert problem-solving knowledge creates problems in the
evaluation of program performance. Although we know that heuristic methods will oc-
casionally fail, it is not clear exactly how often a program must be correct in order to be
accepted: 98 percent of the time? 90 percent? 80 percent? Perhaps the best way to evaluate
a program is to compare its results to those obtained by human experts in the same area.
This suggests a variation of the Turing test for evaluating the performance of expert
systems: A program has achieved expert-level performance if people working in the area
could not differentiate, in a blind evaluation, between the best human efforts and those of
the program. In evaluating the MYCIN program for diagnosing meningitis infections,
Stanford researchers had a number of infectious-disease experts blindly evaluate the
performance of both MYCIN and human specialists in infectious disease (see Sec, 9.4.4).
Similarly, Digital Equipment Corporation decided that XCON, a program for configuring
Vax computers, was ready for commercial use when its performance was comparable to
that of human engineers,
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Expert systems have been built to solve a range of problems in domains such as
medicine, mathematics, engineering, chemistry, geology, computer science, business,
iaw, defense, and education. These programs have addressed a wide range of problem
types; the following list, adapted from Waterman [23], is a useful summary of general
expert-system problem categories. Another excellent survey of expert-system applications
is by Smart and Langeland-Knudsen [21].

1. Interpretation: Formation of high-level conclusions or descriptions from collections
of raw data

Prediction: Projection of probable consequences of given situations

Diagnosis: Determination of the cause of malfunctions in complex situations based
on observable symptoms

Design: Determination of a configuration of system components that meets certain
performance goals while satisfying a set of constraints

Planning: Devising a sequence of actions that will achieve a set of goals given
certain starting conditions

Monitoring: Comparing the observed behavior of a system to its expected behavior
Debugging and repair: Prescribing and implementing remedies for malfunctions

Instruction: Detecting and correcting deficiencies in students’ understanding of a
subject domain

9. Control: Governing of the behavior of a complex environment

3 w2
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e

9.1 OVERVIEW OF EXPERT-SYSTEM
TECHNOLOGY

9.1.1 Design of Rule-Based Expert Systems

Figure 9.1 shows the most important modules that make up a rule-based expert system.
The user interacts with the expert system through a user interface that makes access more
“amfortable for the human and hides much of the system complexity, e.g., the internal

1
]
I
i
u t i Knowledge Base
ser Interface i Edltor
May employ: !
t
Question and il R 3
Answer, K G&t'erala
nowledge Base
!User <=1 Menu driven, Inference Engine
Natural Case Specific
Language or Data
Graphics
Interface Explanation
styles. Subsystem

FIGURE 9.1 Architecture of a typical expert system.
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structures of the rule base. Expert systems employ a variety of interface styles, including
question-and-answer, menu-driven, natural language, or graphics interfaces,

The program must keep track of case-specific data— the facts, conclusions, and other
relevant information of the case under consideration. This includes the data given in a
problem instance, partial conclusions, confidence measures of conclusions, and dead ends
in the search process. This information is separate from the general knowledge base.

The explanation subsystem allows the program to explain its reasoning to the user.
These explanations include justifications for the system’s conclusions (how queries, as
discussed in Sec. 9.2.2), explanations of why the system needs a particular piece of datz
(why queries, as in Sec. 9.2.2), and, in some experimental systems, tutorial explanations
deeper theoretical justifications of the program’s actions.

Many systems also include a knowledge-base editor. Knowledge-base editors car.
access the explanation subsystem and help the programmer locate bugs in the program s
performance. They also may assist in the addition of knowledge, help maintain correct
rule syntax, and perform consistency checks on the updated knowledge base. An example
of the Teiresias knowledge-base editor is presented in Sec. 9.4.5.

The heart of the expert system is the general knowledge base, which contains the
problem-solving knowledge of the particular application. In a rule-based expert system.
this knowledge is represented in the form of if . . . then rules, as in the automobile
battery cable example of Sec. 9.2,

The inference engine applies the knowledge to the solution of actual problems, It is the
interpreter for the knowledge base. In the production system [16, chap. 4], the inference
engine performs the recognize-act control cycle, The procedures that implement the
control cycle are separate from the production rules themselves. It is important to maintain
this separation of knowledge base and inference engine for several reasons:

1. The separation of the problem-solving knowledge and the inference engine makes it
possible to represent knowledge in a more natural fashion, If . . . then rules, e.g., are
closer to the way in which human beings describe their own problem-solving tech-
niques than a program that embeds this knowledge in lower-level computer code.

Because the knowledge base is separated from the program’s lower-level control
structures, expert-system builders can focus directly on capturing and organizing prob-
lem-solving knowledge rather than on the details of its computer implementation.

The separation of knowledge and control, along with the modularity of rules and other
representational structures used in building knowledge bases, allows changes to be
made in one part of the knowledge base without creating side effects in other parts of
the program code,

The separation of the knowledge and control elements of the program allows the same
control and interface software to be used in a variety of systems. The expert-system
shell has all the components of Fig, 9.1 except that the knowledge base (and, of
course, the case-specific data) contains no information. Programmers can use the
“empty shell’’ and create a new knowledge base appropriate to their applications, The
broken lines of Fig. 9.1 indicate the shell modules.

The modularity of the inference process also allows us to experiment with alternative
control regimes for the same rule base.

»
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The use of an expert-system shell can reduce the design and implementation time of
a program considerably. As may be seen in Fig. 9.4, MYCIN was developed in about 20
person-years. EMYCIN (empty MYCIN) is a general expert-system shell that was pro-
duced by removing the specific domain knowledge from the MYCIN program. Using
EMYCIN, knowledge engineers implemented PUFF, a program to analyze pulmonar

-~



RULE-BASED EXPERT SYSTEMS 9.5

%

problems in patients, in about 5 person-years, This is a remarkable savings and an
important aspect of the commercial viability of expert-system technology. Expert-system
shells have become increasingly common, with commercially produced shells available
for all classes of computers.

It is important that the programmer choose the proper expert-system shell. Different
problems often require different reasoning processes, goal-driven rather than data-driven
search, for instance. The control strategy provided by the shell must be appropriate to the
new application. The medical reasoning in the PUFF application was much like that of the
original MYCIN work; this made the use of the EMYCIN shell appropriate. If the shell
does not support the appropriate reasoning processes, its use can be a mistake and worse
than starting from nothing. As we shall see, part of the responsibility of the expert-system
builder is to correctly characterize the reasoning processes required for a given problem
domain and to either select or construct an inference engine that implements these struc-
wres,

Unfortunately, shell programs do not solve all the problems involved in building
expert systems, While the separation of knowledge and control, the modularity of the
production system architecture, and the use of an appropriate knowledge representation
language all help with the building of an expert system, the acquisition and organization
of the knowledge base remain difficult tasks.

9.1.2 Selecting a Problem for Expert-System Development

Expert systems tend to involve a considerable investment in money and human effort,
Attempts to solve a problem that is too complex, poorly understood, or otherwise unsuited
w0 the available technology can lead to costly and embarrassing failures. Researchers have
developed an informal set of guidelines for determining whether a problem is appropriate
for expert-system solution:

1. The need for the solution justifies the cost and effort of building an expert system.
For example, Digital Equipment Corporation (DEC) had experienced considerable finan-
cial expense because of etrors in configurations of Vax and PDP-11 computets. If a
computer is shipped with missing or incompatible components, the company is obliged to
correct this situation as quickly as possible, often incurring added shipping expense or
absorbing the cost of parts not taken into account when the original price was quoted.
Because this expense was considerable, DEC was extremely interested in automating the
configuration task; the resulting system, XCON, has paid for itself in both financial
savings and customer goodwill. Similarly, many expert systems have been built in do-
mains such as mineral exploration, business, defense, and medicine where there is a large
potential for savings in money, time, ot human life. In recent years, the cost of building
axpert systems has gone down as software tools and expertise in Al have become more
available. The range of potentially profitable applications has grown correspondingly.

2. Human expertise is not available in all situations where it is needed. Much
expert-system work has been done in medicine, e.g., because the specialization and
rechnical sophistication of modern medicine have made it difficult for doctors to keep up
with advances in diagnostics and treatment methods. Specialists with this knowledge are
rare and expensive, and expert systems are seen as a way of making their expertise
available to a wider range of doctors, In geology, there is a need for expertise at remote
mining and drilling sites. Often geologists and engineers find themselves traveling large
distances to visit sites, with resulting expense and wasted time. By placing expert systems
at remote sites, many problems may be solved without needing a visit by a human expert.
Similarly, loss of valuable expertise through employee turnover or pending retirement
may justify building an expert system.
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3. The problem may be solved by using symbolic reasoning techniques. This means
that the problem should not require physical dexterity or perceptual skill. Although robots
and vision systems are available, they currently lack the sophistication and flexibility of
human beings. Expert systems are generally restricted to problems that humans can solve
through symbolic reasoning.

4. The problem domain is well structured and does not require commonsense reason-
ing. Although expert systems have been built in a number of areas requiring specialized
technical knowledge, more mundane commonsense reasoning is well beyond our current
capabilities. Highly technical fields have the advantage of being well studied and formal-
ized; terms are well defined, and domains have clear and specific conceptual models.
Most significantly, however, the amount of knowledge required to solve such problems is
small in comparison to the amount of knowledge used by human beings it commonsense
reasoning,

5. The problem may not be solved by using traditional computing methods. Expert-
system technology should not be used to reinvent the wheel. If a problem can be solved
satisfactorily by using more traditional techniques such as numerical, statistical, or op-
erations research techniques, then it is not a candidate for an expert system. Because
expert systems rely on heuristic approaches, it is unlikely that an expert system will
outperform an algorithmic solution if such a solution exists.

6. Cooperative and articulate experts exist.  The knowledge used by expert systems
is often not found in textbooks but comes from the experience and judgment of humans
working in the domain, It is important that these experts be both willing and able to share
that knowledge. This implies that the experts should be atticulate and believe that the
project is both practical and beneficial. If, however, the experts feel threatened by the
system, fearing that they may be replaced by it or that the project cannot succeed and is
therefore a waste of time, it is unlikely that they will give it the necessary time and effort.
It is also important that management be supportive of the project and allow the domain
experts to take time away from their usual responsibilities to work with the program
implementers.

7. The problem is of proper size and scope. It is important that the problem not
exceed the capabilities of current technology. For example, a program that attempted to
capture all the expertise of a medical doctor would not be feasible; a program that advised
MDs on the use of a particular piece of diagnostic equipment would be more appropriate.
As a rule of thumb, problems that require days or weeks for human expetts to solve are
probably too complex for current expert-system technology.

Although a large problem may not be amenable to expert-system solution, it may be
possible to break it into smaller, independent subproblems that are. Or we may be able to
start with a simple program that solves a portion of the problem and gradually increase its
functionality to handle more of the problem domain. This was done successfully in the
creation of XCON. Initially the program was designed only to configure Vax 780 com-
puters; later it was expanded to include the full Vax and PDP-11 series [2].

9.1.3 Overview of Knowledge Engineering

The primary people involved in building an expert system are the knowledge engineer, the
domain expert, and the end user.

The knowledge engineer is the Al language and representation expert. His or her main
task is to select the software and hardware tools for the project, help extract the necessary
knowledge from the domain expert, and implement that knowledge in a correct and
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efficient knowledge base. The knowledge engineer may initially be ignorant of the ap-
plication domain.

The domain expert provides the knowledge of the problem area. The domain expert is
generally someone who has worked in the domain area and understands its problem-
solving techniques, including the use of shortcuts, handling imprecise data, evaluating
partial solutions, and all the other skills that mark a person as an expert. The domain
expert is primarily responsible for spelling out these skills to the knowledge engineer.

As in most applications, the end user determines the major design constraints. Unless
the user is happy, the development effort is wasted by and large. The skills and needs of
the user must be considered throughout the design cycle: What level of explanation does
the user need? Can the user provide correct information to the system? Is the user interface
appropriate? Are there environmental restrictions on the program's use? An interface that
required typing, €.8., would not be appropriate for use in the cockpit of a jet fighter. Will
the program make the user’s work easier, quicker, more comfortable?

Like most Al programming, expert-system development requires a nontraditional de-
velopment cycle based on early prototyping and incremental revision of the code. This
exploratory programming methodology is complicated by the interaction between the
knowledge engineer and the domain expert.

Generally, work on the system begins with the knowledge engineers attempting to gain
some familiarity with the problem domain. This helps in communicating with the domain
expert. This is done in initial interviews with the expert or by reading introductory texts
in the domain area. Next, the knowledge engineer and expert begin the process of
extracting the expert’s problem-solving knowledge. This is often done by giving the
Jomain expert a series of sample problems and having her or him explain the techniques
used in the solution.

Here, it is often useful for the knowledge engineer {0 be a novice in the problem
domain, Human experts are notoriously unreliable in explaining exactly what goes on in
solving a complex problem. Often they forget to mention steps that have become obvious
or even automatic to them after years of work in the field. Knowledge engineers, by virtue
of their relative naivete in the domain, should be able to spot these conceptual jumps and
ask for clarification.

Once the knowledge engineer has obtained a general overview of the problem domain
and gone through several problem-solving sessions with the domain expert, he or she is
ready to begin actual design of the system: selecting a way to represent the knowledge,
such as rules or frames; determining the basic search strategy, such as forward or back-
ward; and designing the user interface. After making these design commitments, the
xnowledge engineer builds a prototype. . '

This prototype should be able to solve problems in a small area of the domain and
provides a test bed for preliminary design assumptions. Once the prototype has been
implemented, the knowledge engineer and domain expert test and refine its knowledge by
ziving it problems to solve and correcting its shortcomings. Should the assumptions made
in designing the prototype prove correct, it can be built into a complete system.

Expert systems are built by progressive approximations, with the program’s mistakes
‘eading to corrections or additions to the knowledge base. In a sense, the knowledge base
s “‘grown’’ rather than constructed. This approach to programming was proposed by
Seymour Papert with his LOGO language [19]. The LOGO philosophy argues that watch-
ing the computer respond to the improperly formulated ideas represented by the code leads
1 their correction (being debugged) and clarification with more precise code. Other
-ssearchers have verified this notion that design proceeds through a process of trying and
-arrecting candidate designs, rather than by such neatly hierarchical processes such as
wap-down design.
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It is also understood that the prototype may be thrown away if it becomes too cum-
bersome or if the designers decide to change their basic approach to the problem. The
prototype lets program builders explore the problem and its important relationships by
actually constructing a program to solve it. After this progressive clarification is complete.
they can often write a cleaner version, usually with fewer actual rules.

The second major feature of expert system programming is that the program need
never be considered *‘finishe ' A large heuristic knowledge base will always have
limitations. The modularity and ease of modification available in the production system
model make it natural to add new rules or make up for the shortcomings of the present rule
base at any time. For example, DEC has continued to add rules to the XCON program to
extend its capabilities to the rest of their product line. In 1981, XCON had about 500 rules
and could configure the Vax 780; it was progressively refined until, today with over
10,000 rules, it configured most of the DEC product line.

Furthermore, as DEC changed the specifications for its computers, previously cotrect
rules needed updating. One report noted that up to 50 percent of the XCON rules were
changed each year just to keep up with changes in the product line.

Figure 9.2 presents a schematic overview of the development cycle of expert-system
software.

Even though expert systems of commercial quality have been available since 1980.
research in the development of expert systems has gone on since the mid-1960s. In fact.
the emergence of commetcially viable expert systems in the present world market has
been a direct result of this eatlier research. Figure 9.3 shows the history of the programs
now considered classic in this area.

The major development activity for these eatly programs took place at three univer-
sities: Stanford, Massachusetts Institute of Technology, and Carnegie Mellon. The main
research and development thrust for the rule-based expert system was at Stanford, under

Dafine Problams and Goals
Design and
Construct Protolype
e
Tost/Use Sysiem

Analyze and
Corract
Shortcomings

Arg Deslgn Rebulld
St Co‘v)rac System

no tailed

Final
Evaluatio

‘ passed

FIGURE 9,2 Exploratory development eycle for rule-
based expert systems.
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FIGURE 9.3 Development history for some classic expert systems, (From P. H. Win-
ston and K. A. Prendergast, eds., The Al Business. Cambridge, Mass.: MIT Press, 1984,
Reprinted by permission.)

the direction of Edward Feigenbaum, although other work in the area certainly took place
at, for instance, Rutgers and the University of Pittsburgh. The early development of the
production system model for problem solving, including the development of the OPS
languages, took place primarily at Camegie Mellon University.

Figure 9.4 presents another important aspect of the evolution of expert-system pro-
grams: The average development time for expert systems has been drastically reduced
~across the decades of evolution. The emergence of expert-system shells was instrumental
in reducing the design time. This is perhaps the most important reason for current com-
mercial successes. '

9.2 A FRAMEWORK FOR ORGANIZING
HUMAN KNOWLEDGE

9.2.1 Production Systems, Rules, and the Expert-System Architecture

The architecture of rule-based expert systems may be understood in terms of the produc-
tion system model for problem solving (15]. In fact, the parallel between the two entities
is more than a simple analogy: The production system was the intellectual precursor of
modern expert-system architecture. This is not surprising; when Newell and Simon began
developing the production system model, their goal was to find a way to model human
problem solving.

If we regard the expert-system architecture in Fig. 9.1 as a production system, the
knowledge base is the set of production rules. The expertise of the problem area is
represented by the productions. In a rule-based system, these condition-action paits are
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FIGURE 9.4 Development time for selected expert systems between 1965 and 1985. (From F. Hayes-
Roth, D. Waterman, and D. Lenat, Building Expert Systems. Reading, Mass.: Addison-Wesley, 1984.
Reprinted by permission.)

represented as rules, with the premises of the rules (the if portion) corresponding to the
condition and the conclusion (the then portion) corresponding to the action. Case-specific
data are kept in the working memory. Finally, the inference engine is the recognize-act
cycle of the production system. This control may be either data-driven or goal-driven.

In a goal-driven expert system, the goal expression is initially placed in working
memory. The system matches rule conclusions with the goal, selecting one rule and
placing its premises in the working memory. This corresponds to a decomposition of the
problem into simpler subgoals. The process continues, with these premises becoming the
new goals to match against rule conclusions. The system thus works back from the
original goal until all the subgoals in working memory are known to be true, indicating
that the hypothesis has been verified. Thus, backward search in an expert system corre-
sponds roughly to the process of hypothesis testing in human problem solving.

In an expert system, subgoals are often solved by asking the user for information,
Some expert-system shells allow the system designer to specify which subgoals may be
solved by asking the user, Other inference engines simply ask about all subgoals that fail
to match with the conclusion of some rule in the knowledge base; i.e., if the program
cannot infer the truth of a subgoal, it asks the user.

Many problem domains seem to lend themselves more naturally to forward search. In
an interpretation problem, e.g., most of the data for the problem are initially given, and
it is often difficult to formulate a hypothesis (goal). This suggests a forward reasoning
process in which the facts are placed in working memory and the system searches for an
interpretation in a forward fashion.

As a more detailed example, let us create a small expert system for diagnosing
automotive problems:
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Rule 1:

if

the engine is getlting gas and
the engine will turn over,
then

the problem is spark plugs.

Rule 2:

if

the engine does not turn over and
the lights do not come on,

then

the problem is battery or cables.

Rule 3:

if

the engine does not turn over and
the lights do come on,

then

the problem is the starter motor.

Rule 4:

if

there is gas in the fuel tank and
there is gas in the carburetor,
then

the engine is getting gas.

To run this knowledge base under a goal-directed control regime, place the top-level
@MﬂﬂwmwkmBX”mWMMQmwmeSMEg95kaX$aWMMMMt
ean match with any phrase; it will become bound to the solution when the problem is
solved.

There are three rules that match with the expression in working memory: rule 1, rule
> and rule 3. If we resolve conflicts in favor of the lowest-numbered rule, then rule 1 will
WMUmbmmeMbWMmmehum&ﬂwuwthWMdeblmm
placed in the working memory, as in Fig. 9.6. The system has thus chosen to explore the
possible hypothesis that the spark plugs are bad. Another way to look at this is that the
system has selected an OR branch in an AND/OR graph (Fig. 9.8).

Note that there are two premises to rule 1, both of which must be satisfied to prove the
conclusion true. These are AND branches of the search graph representing a decompo-

Working Memory Production Rules

the problem Is X

FIGURE 9.5 Working memory at the start of a consul-
tation in the car diagnostic example.
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Working Memary Production Rules
the engine is Rule 1
getting gas Aule 2

the engine will

turn over Rule 3

the problem is Rule 4
spark plugs

FIGURE 9.6 Working memory after rule 1 has fired.

sition of the problem (finding if the spark plugs are bad) into two subproblems—finding
if the engine is getting gas and if the engine is turning over. We may then fire rule 4,
whose conclusion matches with *‘engine is getting gas,’’ causing its premises to be placed
in working memory, as in Fig. 9.7,

At this point, there are three entries in working memory that do not match with any
rule conclusions. Our expert system will query the user directly about these subgoals. If
the user confirms all three of these as true, the expert system will have successfully
determined that the car will not start because the spark plugs are bad. In finding this
solution, the system has searched the AND/OR graph presented in Fig. 9.8.

This is, of course, a very simple example, Not only is its automotive knowledge
limited at best, but a number of important aspects of real implementations are ignored.
The rules are phrased in English, rather than a formal language. On finding a solution, a
real expert system will tell the user its diagnosis; our model simply stops. Also we should
maintain enough of a trace of the reasoning to allow backtracking if necessary; in our
example, had we failed to determine that the spark plugs were bad, we would have needed
to back up to the top level and try rule 2 instead. Notice that this information is implicit
in the ordering of subgoals in working memory of Fig. 9.7 and in the graph of Fig. 9.8.

Working Memory Production Rules
gas In fuel tank Rule 1

gas In carburetor Rule 2

the englne is Rufe 8
getting gas Rufe 4

the engine will

turn over

the problem s

spark plugs

1

FIGURE 9.7 Working memory after rule 4 has fired.
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the problem Is X

Aule 2:
the problem Is battory
or cables

Aule 3:
the problem Is
the starter motor

Rule 1:
the problem Is
spark plugs

the engine
doss not
turn over

the lights
do not
come on

the engine
does not
turn over

the englne
wilt turn
over

the engine Is
getting gas

Aute 4:
the engine Is
gotting gas

gas In tuel tank

gas In carburetor

FIGURE 9.8 The AND/OR graph searched in the car diagnostic example.

This example of expert systems underscores their foundation in the production system and
4ND/OR graph search models of problem solving.

At the beginning of this chapter, we emphasized that an expert system needed to be
>pen to inspection, easily modified, and heuristic. The production system architecture is
s important factor in each of these requirements. Ease of modification, €.g., is made
sassible by the syntactic independence of production rules: Each rule is a chunk of
«nowledge that can be independently modified. The heuristic nature of these rules is in the
snowledge obtained from the domain expert and, as seen in Sec. 9.3, from use of
-enfidence measures. The next section discusses the way in which this architecture sup-
swrts explanations and inspection of the reasoning process.

9.2.2 Explanation and Transparency

The production system implements a graph search; the explanation routines of Fig. 9.1
t2ep track of the graph search and use a trace of the search to answer user queries. The
~coduction rules themselves document each step of the reasoning process.

In general, the two questions supported by rule-based expert systems are why and
~ow. In a why query, the user has been asked for information by the program and
~2sponds with why meaning ‘‘Why did you ask that?”’ The answer is the current rule that
¢ production system is attempting to fire. The answer to *‘How did you get that result?"’
« the sequence of rules that were used to conclude a goal.

: Suppose our automotive expert system has an explanation facility, and assume that the
_snsultation has reached the stage represented by the working-memory configuration in
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Fig. 9.7. The following dialogue begins with the computer asking the user about the goals
present in working memory. User responses are underlined.

gas in fusel tank?
yes
gas in carburetor?

yes
engine will turn over?
why

Here the user enters a why query; i.e., why do you want to know that? It has been
established that

1. Engine is getting gas,
therefore 1f

2. Engine will turn over,

then the problem is spark plugs.

Since the user answered yes to the first two questions, rule 4 was able to fire, verifying
the first premise of rule 1. When the why query was made, the system was trying to solve
the second premise of rule 1. Note that the explanation is just a restatement of the current
rule, but it provides an adequate explanation for why the program wants to know if the
engine will turn over. Continuing with the dialogue:

how engine is getting gas

Here the user asks how the program knew that the engine was getting gas. The response
is a trace of the reasoning that led to this conclusion, working back from the goal along
the rules that support it to the user responses:

This follows from rule 4:
if

gas in fuel tank and

gas 'in carburetor,

then

engine is getting gas.

gas in fuel tank was given by the user

gas in carburetor was given by the user

This simple example illustrates the explanations that expert systems provide to the
user. Why queries are answered by showing the current rule that the system is attempting
to fire. How queries are answered by giving a trace of the reasoning that led to a goa!
Although the mechanisms are conceptually simple, they can exhibit rematkable explar.-
atory power if the knowledge base is organized in a logical fashion.

The production system architecture provides an essential basis for these explanation:
Each cycle of the control loop selects and fires another rule. The program tmay be stoppe<
after each cycle and inspected. Since each rule represents a complete chunk of probleim-
solving knowledge, the current rule provides 2 context for the explanation. Contrast th
with more traditional program architectures: If we stop & Pascal or Fortran program :
midexecution, it is doubtful that the current statement will have much meaning.
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If explanations are to behave logically, it is important not only that the knowledge base
get the correct answer, but also that each rule cotrespond to a single logical step in the
problem-solving process. If a knowledge base combines several steps into a single rule or
if it breaks up the rules in an arbitrary fashion, it may get correct answers but seem
arbitrary and illogical in responding to how and why queries. This not only undermines
the user’s faith in the system but also makes the program much more difficult for its
builders to understand and modify.

9.2.3 Heuristics and Control in Expert Systems

Because of the separation of the knowledge base and the inference engine and the fixed
control regimes provided by the inference engine, the only way that a programmer can
control the search is through the structure of the rules in the knowledge base. This is an
advantage, since the control strategies required for expert-level problem solving tend to be
Jdomain-specific and knowledge-intensive. Although a rule of the form if p, g, and 1, then
s resembles a logical expression, it may also be interpreted as a series of procedures for
solving a problem: to do s, first do p, then do ¢, then do r.

This procedural interpretation allows us to control search through the structure of the
rules. For example, we may order the premises of a rule so that the premise that is most
likely to fail or is easiest to confirm will be tried first. This gives the opportunity of
climinating a rule (and hence a portion of the search space) as early in the search as
possible. Rule 1 in the automotive example tries to determine if the engine is getting gas
before it asks if the engine tutns over. This is inefficient, in that trying to determine if the
engine is getting gas invokes another rule and eventually asks the user two questions. By
reversing the order of the premises, a negative response fo the query *‘Engine will turn
over?’ eliminates this rule from consideration before the more involved condition is
examined,

Also, from a semantic point of view, it makes more sense to determine whether the
engine is turning over before checking to see if it is getting gas; if the engine will not turn
aver it does not matter if it is getting gas. Rule 4 asks the user to check for gas in the fuel
tank before asking that the user open up the carburetor and look there, Tt is performing the
casier check first, '

In addition to the ordering of a rule’s premises, the content of a rule itself may be
fundamentally heuristic. In the automotive example, all the rules are heuristic; conse-
quently, the system may obtain erroneous results. For example, if the engine is getting gas
and turning over, the problem may be a bad distributor rather than bad spatk plugs. In the
next section, we examine this problem and some ways of dealing with it.

9,3 USING UNCERTAINTY MEASURES IN
EXPERT SYSTEMS

9.3.1 Introduction

As mathematicians or scientists, we often want our inference procedures to follow the
model presented with the predicate calculus: From correct premises sound inference rules
oroduce new, guaranteed-correct, conclusions. In expert systems, however, we must
often draw correct conclusions from poorly formed and uncertain evidence, using un-
sound inference rules.
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This is not an impossible task; we do it successfully in almost every aspect of our daily
survival, We deliver correct medical treatment for ambiguous symptoms; we mine natural
resources with little or no guarantee of success before we start; we comprehend language
statements that are often ambiguous or incomplete, and so on.

The reasons for this ambiguity may be better understood by referring once again to our
automotive expert system example. Consider rule 2:

if
the engine does not turn over and
the lights do not come on,

then
the problem is battery or cables.

This rule is heuristic in nature; it is possible, although less likely, that the battery and
cables are fine but that the car simply has a bad starter motor and burned-out headlights.
This rule seems to resemble a logical implication, but it is not: Failure of the engine to turn
over and the lights to come on does not necessarily imply that the battery and cables are
bad. What is interesting to note, however, is that the converse of the rule is a true
implication:

if
the problem is battery or cables,
then
the engine does not turn over and
the lights do not come on.

Barring the supernatural, a cat with a dead battery will not light its headlamps or turn the
starter motor.

This is an example of abductive reasoning. Formally, abduction states that from
P — Q and Q it is possible to infer P.

Abduction is an unsound rule of inference, meaning that the conclusion is not neces-
sarily true for every interpretation in which the premises are true. For example, if some-
one says, *‘If it rains, then T will not go running at 3:00 p.m.”” and you do not se¢ that
person on the track at 3:00 p.m., does it necessarily follow that it is raining? It is possible
that the individual decided not to go running because of an injury or needing to work late.

Although abduction is unsound, it is often essential to solving problems. The “‘cor-
rect’’ version of the battery rule is not particularly useful in diagnosing car troubles since
its premise (bad battery) is our goal and its conclusions are the observable symptoms that
we must work with, Modus ponens cannot be applied, and the rule must be used in an
abductive fashion. This is generally true of diagnostic (and other) expert systems. Faults
or diseases cause (imply) symptoms, not the other way around, but diagnosis must work
from the symptoms back to the cause.

Uncertainty results from the use of abductive inference as well as from attempts 10
reason with missing or unreliable data, To get around this problem, we can attach some
measure of confidence to the conclusions. For example, although battery failure does not
always accompany the failure of a car’s lights and starter, it almost always does, and
confidence in this rule is justifiably high.

Note that there are problems that do not require certainty measures. When one i3
configuring a computer, for instance, either the components go togethet, or they do not
The idea that **A particular disk drive and bus go together with certainty 0.75°" does not
even make sense. Similarly, if MACSYMA is attempting to find the integral of a function.
a confidence of *‘0.6’’ that a result is correct is not useful. These programs may be either
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data-driven (Digital’s XCON) or goal-driven (Massachusetts Institute of Technology's
MACSYMA), but because they do not require abductive rules of inference or do not deal
with unreliable data, they do not require the use of confidence measures.

In this section we discuss several ways of managing the uncertainty that results from
heuristic rules: first, the bayesian approach and, second, the Stanford certainty theory.
Finally, we briefly consider Zadeh’s fuzzy ser theory, the Dempster/Shafer theory of
evidential reasoning, and nonmonotonic reasoning.

9.3.2 Bayesian Probability Theory

The bayesian approach to uncertainty is based in formal probability theory and has shown
up in several areas of Al research, including pattern recognition and classification prob-
lems. The PROSPECTOR expert system, built at Stanford and SRI International and
employed in mineral exploration (copper, molybdenum, and others), also uses a form of
the bayesian statistical model.

Assuming random distribution of events, probability theory allows the calculation of
more complex probabilities from previously known results, In simple probability calcu-
iations we are able to conclude, e.g., how cards might be distributed to a number of
- players,

Suppose that I am one person of a four-person card game where all the cards are
equally distributed. If I do not have the queen of spades, I can conclude that each of the
other players has it with probability ¥, Similarly, I can conclude that each player has the
xce of hearts with probability V5 and that any one player has both cards at V3 X 14, or Y.

In the mathematical theory of probability, individual probability instances are worked
cut by sampling, and combinations of probabilities are worked out as above, using a rule
such as

probability(A and B) = probability(A) X probability(B)

@iven that A and B are independent events.

One of the most important resuits of probability theory is Bayes' theorem. Bayes’
results provide a way of computing the probability of a hypothesis following from a
sarticular piece of evidence, given only the probabilities with which the evidence follows
from actual causes (hypotheses).

Bayes’ theorem states:

P(EiH)) X PH))

PHIE) =

n
DIPEH) x P(H))]
k=1
= here P(HIE) = probability that H; is true given evidence E
P(H;) = probability that H; is true overall
P(EIH)

i

probability of observing evidence E when H; is true

Il

n = number of possible hypotheses

Suppose we desire to examine the geological evidence at some location to see if the
#xcation is suited to finding copper. We must know in advance the probability of finding
zach of a set of minerals and the probability of certain evidence being present when each
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particular mineral is found. Then we can use Bayes' theorem to determine the likelihood
that copper will be present, using the evidence we collect at the location. This is the
approach taken in the PROSPECTOR program, which has found commercially significant
mineral deposits {9] at several sites.

There are two major assumptions for the use of Bayes’ theorem: First, all the statistical
data on the relationships of the evidence with the various hypotheses are known; second,
and more difficult to establish, all relationships between evidence and hypotheses, or
P(E\H,), are independent. Actually, this assumption of independence can be quite a tricky
matter, especially when many assumptions of independence are needed to establish the
validity of this approach across many rule applications, This represents the entire col-
Jected probabilities on the evidence given various hypothesis relationships in the denom-
inator of Bayes’ theorem. In general, and especially in areas like medicine, this assump-
tion of independence cannot be justified.

A final problem, which makes keeping the statistics of the ‘‘evidence given hypoth-
eses’’ relationships virtually intractable, is the need to rebuild all probability relationships
when any new relationship of hypothesis to evidence is discovered. In many active
research areas, such as medicine, this is happening continuously. Bayesian reasoning
requires complete and up-to-date probabilities if its conclusions ate to be correct, In many
domains, such extensive data collection and verification are not possible.

Where these assumptions are met, bayesian approaches offer the benefit of a well-
founded and statistically correct handling of uncertainty. Most expert-system domains do
not meet these requirements and must rely on more heuristic approaches. It is also felt that
the human expert does not use the bayesian model in successful problem solving. In the
next section we describe certainty theory, a heuristic approach to the management of
uncertainty.

9.3.3 A Theory for Certainty
Several early expert-system projects (besides PROSPECTOR) attempted to adapt Bayes'

theorem to their problem-solving needs. The independence assumptions, continuous up-
dates of statistical data, and other problems mentioned in Sec. 9.3.2 gradually led these
researchers to search for other measures of *‘confidence.’” Probably the most important
alternative approach was used at Stanford in developing the MYCIN program [3].
Certainty theory is based on a number of observations. The first is that in traditional
probability theory the sum of confidence for a relationship and confidence against the
same relationship must sum to 1. However, often an expert might have confidence 0.7,
say, that some relationship is true and have no feeling about its being not true.
Another assumption that underpins certainty theory is that the knowledge content of
the rules is much more important than the algebra of confidences which holds the system
together. Confidence measures correspond to the informal evaluations that human experts
attach to their conclusions, e.g., “It is probably true’’ or ““It is highly unlikely.”
Certainty theory makes some simple assumptions for creating confidence measures and
has some equally simple rules for combining these confidences as the program moves
toward its conclusion. The first assumption is to split <sconfidence for’® from *‘confidence

against’’ in a relationship:

Call MB(HIE) the measure of belief of a hypothesis H given evidence E.
Call MD(HIE) the measure of disbelief of a hypothesis H given evidence E.

Now either

1 > MB(HIE) > 0 while MD(HIE) =0
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or
1 > MD@HIE) > 0 while MB(HIE) = 0

The two measures constrain each other in that a given piece of evidence is either for or
against a particular hypothesis. This is an important difference between certainty theory
and probability theory. Once the link between measures of belief and disbelief has been
established, they may be tied together again with the certainty-factor (CF) calculation:

CR(HIE) = MB(HIE) — MD(HIE)

As the certainty factor (CF) approaches 1, the evidence is stronger for a hypothesis; as CF
approaches —1, the confidence against the hypothesis gets stronger; and a CF around 0
indicates that there is little evidence either for or against the hypothesis.

When experts put together the rule base, they must agree on a CF to go with each rule.
This CF reflects theit confidence in the rule’s reliability. Certainty measures may be
adjusted to tune the system's performance, although slight variations in this confidence
measure tend to have little effect on the overall running of the system (again, the know!-
edge gives the power).

The premises for each rule are formed of the AND and OR of a number of facts. When
a production rule is used, the certainty factors that are associated with each condition of
the premise are combined to produce a certainty measure for the overall premise in the
following manner.

For P, and P,, premises of the rule,

CE(Py and Pp) = min(CF(Py), CF(Py))
and
CR(P, or Pp) = max(CF(Py), CF(Py))

The combined CF of the premises, by using the above combining rules, is then multiplied
by the CF of the rule to get the CF for the conclusions of the rule.
For example, consider the rule in a knowledge base

(P and P,) or P3 — R1(0.7) and Ry(0.3)

where P,, P,, and P, are premises and R, and R, are the conclusions of the rule having
CF values of 0.7 and 0.3, respectively. These numbers are added to the rule when it is
designed and represent the expert’s confidence in the conclusion if all the premises are
known with complete certainty. If the running program has produced P, P, and Py with
CF values of 0.6, 0.4, and 0.2, respectively, then R, and R, may be added to the collected
case-specific results with CF values of 0.28 and 0.12, respectively.

Here are the calculations for this example:

CF(P(0.6) and P»(0.4)) = min(0.6, 0.4) = 0.4
CF((0.4) or P(0.2)) = max(0.4, 0.2) =04

The CF for R, is 7 in the rule, so R, is added to the set of true facts with the associated
CFof 7 * 0.4 = 0.28. The CF for R, is 0.3 in the rule, so R, is added to the set of true
facts with the associated CF of 0.3 # 0.4 = 0.12.

One further measure is required: how to combine multiple CFs when two or more rules
support the same result R. T his is the certainty theory analog of the probability theory
procedure of multiplying the probability measures to combine independent evidence. By
using this rule repeatedly, one can combine the results of any number of rules that are used
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for determining result R. Suppose CF(R,) is the present certainty factor associated with
result R and a previously unused rule produces result R (again) with CF(R,); then the new
CF of R is calculated by

CF(R,) + CF(R) — (CF(R,) * CF(R,)) when CF(R,) and CF(R,) are positive
CF(R,) + CF(Ry) + (CF(R,) * CF(R,)) when CF(R,) and CF(R,) are negative
CF(R,) + CF(R,) over 1 — min (ICER)ILICER)) otherwise

where X! is the absolute value of X.

Besides being easy to compute, these equations have other desirable properties. First.
the CFs that result from applying this rule are always between 1 and —1, as are the other
CFs. Second, the result of combining contradictory CFs is that they cancel, as would be
desired, Finally, the combined CF measure is a monotonically increasing (decreasing)
function in the manner one would expect for combining evidence.

Certainty theory has been criticized as being excessively ad hoc. Although it is defined
in a formal algebra, the meaning of the certainty measures is not as rigorously founded as
in formal probability theory. However, certainty theory does not attempt to produce an
algebra for *“*correct’’ reasoning. Rather it is the *‘lubrication’’ that lets the expert system
combine confidences as it moves along through the problem at hand. Its measuxes are ad
hoc in the same sense that a human expert’s confidence in her or his results is approxi-
mate, heuristic, and informal. In Sec. 9.4, when MYCIN is considered, the CFs will be
used in the heuristic search to give a priority for goals to be attempted and a cutoff point
when a goal need not be considered further. But even though the CF is used to keep the
program running and collecting information, the power of the program lies in the content

of the rules themselves. This is the justification for the weakness of the certainty algebra.

9.3.4 Other Approaches to Uncertainty

Because of the importance of uncertain reasoning to expert-level problem solving and the
limitations of certainty theory, work continues in this important area. In concluding this
subsection, we mention briefly three other approaches to modeling uncertainty: Zadeh's
fuzzy set theory, the Dempstet/Shafer theory of evidence, and nonmonotonic reasoning.

Zadeh’s main contention [25] is that although probability theory is appropriate for
measuring randomness of information, it is inappropriate for measuring the meaning of
information. Indeed, much of the confusion surrounding the use of English words and
phrases is related to lack of clarity (vagueness) rather than randomness. This is a crucial
point for analyzing language structures and can also be important in creating a measure of
confidence in production rules. Zadeh proposes possibility theory as a measure of vague-
ness, just as probability theory measures randomness.

Zadeh’s theory expresses lack of precision in a quantitative fashion by introducing a
set membership function that can take on real values between 0 and 1. This is the notion
of a fuzzy set and can be described as follows: Let S be a set and 5 a member of that set.
A fuzzy subset F of § is defined by a membership function mF(s) that measures the
“‘degree”’ to which s belongs to F.

A standard example of the fuzzy set is for § to be the set of positive integers and F to
be the fuzzy subset of S called “small integers.'” Now various integer values can have a
“possibility’’ distribution defining their *‘fuzzy membership’’ in the set of small integers:
mF(l)y = 1, mF2) = 1, mF@3) = 0.9, mF@4) =0.8,. . ., mF(50) = 0.001, etc. For
the statement that positive integer X is a “small integer,”” mF creates a possibility
distribution across all the positive integers (5)-
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Fuzzy set theory is not concerned with how these possibility distributions are created,
but rather with the rules for computing the combined possibilities over expressions that
each contain fuzzy variables. Thus it includes rules for combining possibility measures for
expressions containing fuzzy variables. The laws for the OR, AND, and ™ of these
expressions are similar to those just presented for certainty factors. In fact, the approach
at Stanford was modeled on some of the combination rules described by Zadeh [3].

Dempster and Shafer approach the problem of measuring certainty by asking us to
make a fundamental distinction between uncertainty and ignorance. In probability theory
we are forced to express the extent of our knowledge about a belief X in a single number
P(X). The problem with this, say Dempster and Shafer, is that we simply cannot always
know the values of prior probabilities, and thus any particular choice of P(X) may not be
justified.

The Dempster-Shafer approach recognizes the distinction between uncertainty and
ignorance by creating *‘belief functions.”’ These belief functions satisfy axioms that are
weaker than those of probability theory. Thus probability theory is seen as a subclass of
belief functions, and the theory of evidence can reduce to probability theory when all the
probabilities are obtainable. Belief functions therefore allow us to use our knowledge to
bound the assignment of probabilities to events without having to come up with exact
probabilities, when these may be unavailable. .

Even though the Dempster-Shafer approach gives us methods of computing these
various belief parameters, their greater complexity adds to the computational cost as well.
Besides, any theory that has probability theory as a special case is plagued by the
assumptions that have made probability theory already quite difficult to use. Conclusions
using beliefs, even though they avoid commitment to a stronger (and often unjustified)
assignment of probability, produce conclusions that are necessarily weaker. But as the
Dempster-Shafer model points out quite correctly, the stronger conclusion may not be
justified.

All the methods we have examined can be criticized for using numeric approaches to
the handling of uncertain reasoning. It is unlikely that humans use any of these techniques
for reasoning with uncertainty, and many applications seem to require a more qualitative
approach to the problem. For example, numeric approaches do not support adequate
explanations of the causes of uncertainty. If we ask human experts why their conclusions

are uncertain, they can answer in terms of the qualitative relationships between features
of the problem instance. In a numeric model of uncertainty, this information is replaced
by numeric measures. Similarly, numetic approaches do not address the problem of
changing data. What should the system do if a piece of uncertain information is later
found to be true or false?

Nonmonotonic reasoning addresses these problems directly. A nonmonotonic reason-
g system handles uncertainty by making the most reasonable assumptions in light of
ancertain information. It proceeds with its reasoning as if these assumptions were true, At
1 later time, it may find out that an assumption was erroneous, either through a change in
problem data or by discovering that the assumption led to an impossible conclusion. When
‘his occurs, the system must change both the assumption and all the conclusions that
depend on it.

Nonmonotonicity is an important feature of human problem solving and commonsense
reasoning. When we drive to work, e.g., we make numerous assumptions about the roads
<nd traffic. If we find that one of these assumptions is violated, perhaps by construction
ar an accident on our usual route, we change our plans and devise an alternative route to
work.

Nonmonotonic reasoning contrasts sharply with the inference strategies we have dis-
-ussed so far in the text. These strategies assume that axioms do not change and that the
-onclusions drawn from them remain true. They are called wionotonic reasoning systems
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because knowledge can only be added through the reasoning process. Since information
may also be retracted in a nonmonotonic reasoning system when something that was
previously thought to be true is later shown to be false, it is important to record the
justification for all new knowledge. When an assumed fact is withdrawn, all conclusions
that depend on that fact must be reexamined and possibly withdrawn as well. This record
keeping is the task of truth maintenance systems (7, 8].

9.4 MYCIN: A CASE STUDY

9.4.1 Introduction

Although our small automotive diagnostic example is useful in presenting some of the
concepts of expert-system design, it is a toy system and ignores much of the complexity
encountered in building large knowledge-based programs. For this reason, we end this
chapter with a case study of an actual working expert system.

The MYCIN project was a cooperative venture by the Department of Computer Sci-
ence and the Medical School at Stanford University. The main work on the project was
done during the middle and late 1970s, and about 50 person-years were expended in the
effort, MYCIN was written in INTERLISP, a dialect of the LISP programming language.
One of the earliest expert systems to be proposed and designed, it has become an im-
portant classic in the field. Indeed, it is often presented as the archetype for the rule-based
program, with many commercial systems essentially duplicating the MYCIN approach.
One of the main reasons for the influence of the MYCIN program is the extensive
documentation of the project by the Stanford research teams [3].

MYCIN was designed to solve the problem of diagnosing and recommending treat-
ment for meningitis and bacteremia (blood infections). This particular domain was chosen
largely because the program architects wanted to explore the way in which human experts
reason with missing and incomplete information. Although there are diagnostic tools that
can unambiguously determine the identity of the infecting organisms in a case of men-
ingitis, these tools require on the order of 48 h (chiefly to grow a culture of the infecting
organisms) to return a diagnosis. Meningitis patients, however, are very'sick, and some
treatment must begin immediately. Because of this need, doctors have developed con-
siderable expertise, based on initial symptoms and test results, for forming a diagnosis
that covers (i.e., includes as a subset) the actual infecting organisms. Treatment begins
with this diagnosis and is refined when more conclusive information becomes available.
Thus, the domain of meningitis diagnosis provided a natural focus for studying how
humans solve problems by using incomplete or unreliable information.

Another goal of the MYCIN design team was to pattern the behavior of the program
after the way in which human physicians interact in actual consultations. This was seen
as an jmportant factor in system acceptability, particularly since medical consultations
tend to follow a standard set of protocols.

In the next subsections we examine the composition of the MYCIN rule and fact
descriptions, including the syntax of MYCIN rules. Next, we present a trace of a MYCIN
consultation, along with explanatory comments and a discussion of the design and struc-
ture of the dialogue. We then discuss the problem of evaluating expert systems and,
finally, demonstrate the use of an experimental knowledge-base editor Teiresias. Editors
such as Teiresias assist the domain experts (in this case the doctors) in correcting the
MYCIN knowledge base without the need for a computer language expert. Although such
tools are still mainly experimental, this is an important area of research and a potential key
to increasing the range of applicability of expert-system techunology.
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9.4.2 Representation of Rules and Facts

Facts in MYCIN are represented as attribute-object-value triples. T he first element of this
structure is an attribute of an object in the problem domain. For example, we may wish
to describe the identity of a disease organism or its sensitivity to certain drugs. The name
of the object and the value of the attribute follow. Since information in this domain may
be uncertain, a certainty factor is associated with MYCIN facts. Recall from Sec. 9.3.3
that this certainty factor will be between 1 and —1, with 1 being certain, —1 indicating
certainty that the attribute is not true, and 0 indicating that little is known,
For example, MYCIN facts may be represented in English by:

There is evidence {(0.25) that the identity of the organism is
Klebsiella.

A AL 2=

and

It is known that the organism is not sensitive to penicillin,
These may be translated into the LISP s expressions:

(ident organism_l klebsiella 0.25)

and

(sensitive organism_l penicillin ~1.0)

We next present an example MYCIN rule both in English and in its LISP equivalent.
This sample rule is a condition-action pair in which the premise (condition) is the con-
junction of three facts (attribute-object-value triples) and the action adds a new fact to the
set of things known about the patient, the identity of a particular organism that is added
10 the **cover set'’ of possible infecting organisms. Because this is an abductive rule of
inference (inferring the cause from the evidence), it has an attached certainty factor.

In English: IF (a) the infection is primary bacteremia, and (b) the site of the culture is
one of the sterile sites, and (c) the suspected portal of entry is the gastrointestinal tract,
then there is suggestive evidence (0.7) that infection is bacteroid.

This is rendered for MYCIN thus:

IF: (AND (same_context infection primary_bacteremia)
(membf_context site sterilesite)
(same_context portal GI))

THEN: (conclude context_ident bacteroid tally 0.7).

Syntactically, attribute-objective-value (A-O-V) triples are essentially a restriction of
predicate calculus expressions to binary predicates. This restriction is not particularly
limiting, since algorithms exist for translating predicates of any arity into a set of binary
predicates,

There is a deeper difference between predicate calculus and the A-O-V triples used in
MYCIN: Predicates may be either true or false. Predicate calculus uses sound rules of
inference to determine the truth value of conclusions. In MYCIN, a fact has an attached
confidence rather than a truth value. When the system is deriving new facts, it fails to fire
any rule whose premise has a certainty value of less than 0.2, This contrasts with logic,
which causes a rule to fail if its premise is found to be false.



9.24 COMPUTER ENGINEERING HANDBOOK

This comparison of attribute-object-value triples and predicate calculus expressions is
included here to emphasize both the similarities and the tradeoffs involved in different
knowledge representations. At the highest conceptual level, the characteristics that define
a rule-based expert system are independent of any commitment to a particular represen-
tational format. These characteristics have been discussed in the comparison of rule-based
expert systems and the production system model of problem solving. At the level of an
implementation, however, the selection of a particular representational formalism does
involve a number of important tradeoffs. These issues include the clarity of the repre-
sentation, expressiveness (what knowledge can the formalism effectively capture?), nat-
uralness of expression, and ease of implementing and verifying the system.

The action of a MYCIN rule can perform a number of tasks once the rule is satisfied.
It may add new information about a particular patient to the working memory. It may also
write information to the terminal (or other output device), change the value of an attribute
or its certainty measure, look up information in a table (where this representation is more
efficient), or execute any piece of LISP code.

Although the ability to execute arbitrary LISP code gives unlimited added power, it
should be used judiciously, since excessive use of escapes to the underlying language can
lose many of the benefits of the production system formalism. As an absurd example of
this, imagine an expert system with only one rule, whose action is to call a large and
poorly structured LISP program that attempts to solve the problem!

MYCIN rule and fact descriptions, like all knowledge representation, are a formal
language and have a formal syntactic definition. This formal syntax is essential to the
definition of well-behaved inference procedures. Furthermore, the formal syntax of rules
can help a knowledge-base editor, such as Teiresias, determine when the domain expert
has produced an incorrectly formed rule and can prevent that rule from entering the
knowledge base. Teiresias can detect syntactic errors in a rule and, to an impressive
degree, automatically remedy the situation (see Sec. 9.4.5). This is possible only when
the entire program is built on a set of formal specifications,

The syntax of MYCIN rules is given below. It is stated in Backus-Naur form (BNF)
[20]. BNF is a form of context-free grammar that is widely used to define programming
languages. In the notation, key words in the language are written in uppercase letters.
These are terminals in the syntax. Nonterminals are enclosed in angle brackets (<>). The
BNF grammar is a collection of rewrite rules; the nonterminal figure to the left of the ::=
can be replaced with the expression on the right. If we begin with the nonterminal.
anything that can be produced through a series of legal substitutions is a legal MYCIN
rule,

<rule> ::= {IF <antecedent> THEN <action> [ELSE <action>])
<antecedent> ::= (AND {<oondition>}+)

<gondition> ::= (OR {<condition>}+ | <predicate><associative-triple-

<associative—-triple> ::= (<attribute><object><value>)
<action> ::= {<consequent>}+ | {<procedure>}+

<gonsequent> ::= (<associat1ve—~triple><certainty—factor>)
<gertainty-factor> ::= ( ranges from -1 (false} to +1 (true))
<predicate> is any LISP predicate.

<procedure> is any piece of LISP code.

9.4.3 MYCIN Diagnosing an lliness

MYCIN is a goal-driven expert system, Its main action is to try to determine whether 2
particular organism may be present in the meningitis infection in the patient. A possible
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infecting organism forms a goal that is either confirmed or eliminated. It is interesting to
note that the decision to make MYCIN a goal-driven system was not based exclusively on
the effectiveness of the strategy in pruning the search space. Early in the design of the
system, the MYCIN architects considered the use of forward search. This was rejected
because the questions the system asked the user seemed random and unconnected. Goal-
driven search, because it is attempting to either confirm or eliminate a particular hypoth-
esis, causes the reasoning to seem more focused and logical. This builds the user’s
understanding and confidence in the system’s actions. An expert system needs to do more
than obtain a correct answer; it must also do so in an intelligent and understandable
fashion. This criterion influences the choice of search strategies as well as the structure
and order of rules.

In keeping with this goal of making the program behave as a doctor, MYCIN's
designers noted that doctots ask routine questions at the beginning of a consultation (e.g.,
“How old are you?"’ and ‘‘Have you had any childhood diseases?’’) and ask more
specific questions when needed. Collecting the general information at the beginning
makes the session seem more focused in that it is not continually interrupted by trivial
questions such as the name, age, sex, and race of the patient. Certain other questions are
asked at other well-defined stages of a consultation, such as at the beginning of consid-
ering a new hypothesis. .

Eventually the questions get more specific (questions 16 and 17 in the trace below) and
related to possible meningitis. When positive responses are given to these questions,
MYCIN determines that the infection is meningitis, goes into full goal-driven mode, and
ries to determine the actual infecting organisms. It does this by considering each infecting
organism that it knows about and by attempting to eliminate or confirm each hypothesis
in turn. Since a patient may have more than one infecting organism, MYCIN searches
exhaustively, continuing until all possible hypotheses have been considered,

MYCIN controls its search in a number of ways that have not been discussed yet. The
knowledge base includes rules that restrict the hypotheses to be tested. For example,
MYCIN concludes that it should test for meningitis when the patient has had headaches
and other abnormal neurological signs.

Another feature of MYCIN's inference engine is the order in which it tries the back-
ward chaining rules. After the general category of the infection (meningitis, bacteremia,
stc.) is determined, each candidate diagnosis is examined exhaustively in a depth-first
fashion. ’

To make the search behave more intelligently, MYCIN first examines all the premises
of a rule to determine if any are already known to be false. This prevents the program from
wving to solve several of the premises, only to discover that the rule could have been
zliminated immediately by one of the later premises.

MYCIN also attempts to find a unity path. In trying to prove a goal, it looks for rules
*at can conclude that goal with a certainty of 1. If one of these rules succeeds, the system
dnes not have to try other rules; the goal is known to be true. This increases both the
sfiiciency and the rationality of the search procedure.

When the confidence measures for a rule premise get below a certain value, the

- septh-first search is terminated. As mentioned above, the certainty measure for each

=stient’s data is combined with the measures resident in the rules to give the certainty of
+e new conclusions for the patient, When these get below 0.2, MYCIN abandons the
warch and goes back up the graph to try another branch of the search space.

When the user wants MYCIN to justify its request for some information, he or she can
i why. Initially, this is answered by the phrase *‘because I need the information as a

_ wecessary attribute of each patient.”” Once MYCIN begins its backward search for the

525 of the patient’s problems, however, the why question is answered by printing the
=z that MYCIN is currently considering.
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As mentioned eatlier in this chapter, the “‘English-like'" interaction that the computer
offers the user is not a full English language understanding program. Appropriate forms
for English language comments and questions are attached to each rule when it is created
so that the proper query can be presented to the user when information is needed for use
of the rule or so that a rule can be printed in response to a user query.

The following dialogue is a simulated run of the MYCIN program adapted from
transcripts of actual MYCIN consultations. It is not necessary to understand cither the
medical terminology or the medical reasoning to appreciate MYCIN’s problem solving.

Our comments on the MYCIN trace are reproduced in italics throughout the interac-
tion. The MYCIN questions and answers are indented, with the user's responses under-
lined.

@mycin
MYCIN 26-March....
Tnstructions? {Y or N)

N
26-March 10:42
————— PATIENT—1-———-
Mycin has created an object (PATIENT-1) in its dynamic knowledge base or working
memory. Certain attributes are immediately requested and are necessary for every pa-
tient. These make up the first four questions. . .

MYCIN restates the question before answering. . . -

{i.e., Why is it important to determine the sex of PATIENT-17]
[1.0] The sex of the patient is one of the four standard parameters
that identify a patient. This may be useful later. ...

[back to question 3...]

Male

(4) Race?

Caucasian
(5) Are there any cultures for Alan Apt that may be related to the

present illness and from which organisms have been grown
successfully in the laboratory?

No

MYCIN is a program to analyze and treat infectious diseases, sO before it gets intc
close questioning of the patient’s present condition, it asks about any present or pending
data (cultures) that are available. . . .

{6) Are there any pending cultures for Alan Apt?
————— CULTURE—1~————
Another object (CULTURE-1) is created and linked to PATIENT-1. . . .

(7) From what site was the specimen for CULTURE-1 taken?
CSF
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(8) Please give the date and time when the pending CSF oulture was
obtained?

26-March-7:00

(9) Was a smear examined at the time the specimen was obtained?
Yes

(10) Were any cultures seen on the smear of the specimen?

No

Indention indicates that MYCIN's attention has returned from consideration of the new
object (CULTURE-1) back to the original object (PATIENT-1).

(11) Are there any other pending cultures?
No

{16) Has Alan Apt recently had symptoms of persistent headache or
other abnormal neurologic symptoms (dizziness, lethargy, eto.)?

Yes

{17) Has Alan Apt recently had objective evidence of abnormal
neurologic signs (nuchal rigidity, coma, seizures, etc.) documented.
by a physician?

Yes

With the answers of these last two questions in the affirmative, MYCIN decides to
onsider meningitis infections and goes into a full backchaining search to try fo identify
the organisms that might be causing the meningitis.

{18) Please give the date on which clinical evidence (symptoms,
signs, or laboratory tests) of the meningitis first appeared.
25 March 10:00

(36) Has Alan Apt had neurosurgery?

fihy
[i.e., Why is it important to determine whether PATIENT-1 has had
neurosurgery?]

6.0} This will aid in determining the organisms (other than those

Seen on oultures or smears) that might be causing the infection. It

nas already been established that ™
[6.1] the oulture that requires therapy is meningitis, and

i6.2] organisms were not seen on the stain of the pending CSF

zulture (CULTURE-1), and

{6.3] the type of infection is bacterial

Therefore, if

76.4] Alan Apt has had neurosurgery, and

’6.5] the time since the neurosurgical operation is less than 2

~onths, and
{6.5] the type of neurosurgery is not ventricular urethral shunt,
*hen

-here is evidence that the organisms that might be causing the
infection are
staphylococcus—coag-pos (0.75), staphylococous-coag-neg (0.8),
E. coli (0.4), klebsiella....
suthor: Yu
[RULE511]
‘back to question 36...]

How [6.3]
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The physician is concerned how MYCIN arrived at the conclusion that the infection is
bacterial. MYCIN responds, dfter restating its interpretation of the question the doctor is
asking, with the rules it used to determine that the infection was indeed bacterial. The
answer to how is given as the rules used, as well as their (positive and negative) certaint
factors, for determining this result. . . .

{i.e., How was it established that the type of infection is
bacterial?]

The following rules concluded about the likelihood that the type of
infection is vacterial

Rule VYes No

{6.7] 600 (0.4)
{6.8] 601 {0.17)
[6.9] 802 {0.1)
[6.10] 524 (0.42)
[6.11] 504 (0.28)

Thus it has been established that the type of infection might be
bacterial. '

{pack to question 36...]

No h

(4R) Is Alan Apt a burn patient?

Yes

T have found evidence {RULE 507) that treatment should cover for
Diplogocous pheumoniae causing meningitis.

1 have found evidence (RULE 545) that treatment should cover for E.
coli causing meningitis

I have found evidence (RULE 545 RULE 578) that the treatment should
cover for Pseudomonas aeruginosa causing meningitis.

pak=3-4 bl s e

MYCIN now attempls 0 prescribe appropriate therapies for these infections. First, it
must be determined whether the patient has any allergies to antibody therapies. The
height and weight of the patient are also requested to determine proper dosages . . .

(43) Does Alan Apt have focal neurological signs?

No

{Determining which dosages are desirable for use against the B,
coli ...)

{Determining which drugs are desirable for use .

INFECTION-1 is MENINGITIS

+ DIPLOCOCCUS—PNEUMONIAE {from clinical evidence only)

+ E. COLI (from clinical evidence only)

+ PSEUD. .. )

{REC-1] My preferred therapy recommendation is as follows:
In order to cover for items:

Ggive the following in combination:

(1) AMPICILLIN

Dose: 3.86 g (30.8 ml) g4h IV

(2) GENTAMICIN

Dose: 131 mg (3.2 ml) g8h IV




N RULE-BASED EXPERT SYSTEMS 9.29

Comments:
Monitor serum concentrations
Since high concentrations of penicillins can inactivate
aminoglycosides,
do not mix these antibiotics in the same IV bottle.
you wish to see the next choice therapy?

If the physician did not like the recommended treatment, she or he could have asked
i-» another, eliminating one of the drugs (ampicillin, for instance). MYCIN would then
wrve attempted to find another treatment. . . .

3.4.4 Evaluation of Expért Systems

Sre of the difficult issues faced by expert-system design teams is to determine when the
scogram is ready for actual use. This problem is all the mote difficult when the program,

iye MYCIN, deals with life-threatening situations; here mistakes, such as overlooking an
wiecting agent, can be catastrophic. Many expert systems, including MYCIN [3], have
scen evaluated by using a form of the Turing test. :

Ten randomly selected case histoties of meningitis were rediagnosed by MYCIN and
+:ght practitioners at the Stanford Medical School. These included five faculty members,
-mz research fellow in infectious diseases, one resident physician, and one medical stu-
“ent. The actual therapy given by the original doctors on the case was also included, for
1 wital of 10 diagnoses.

These 10 diagnoses were evaluated by eight other infectious-disease experts, The
zagnoses were ‘‘blind”” in that they were uniformly coded so that the experts did not
«zow whether they were looking at the computer’s diagnosis or that of the humans, The
+ 2luators rated each diagnosis as acceptable or unacceptable, with a practitioner being

_ rven one point for each acceptable rating. Thus, a perfect score would be 80 points, The
~sults of this evaluation are given in Table 9.1.

Table 9.2 presents the results of asking another important question in this *“life-and-
4eath” analysis: In how many cases did the recommended therapy fail to cover for a
r=atable infection? The results in both tables indicate that MYCIN performed at least as
w1l as the Stanford experts. This is an exciting result, but it should not surprise us since

TABLE 9.1 Experts Evaluate MYCIN and TABLE 9.2 Number of Cases in Which

~mme Other Prescribers Therapy Missed a Treatable Pathogen
Prescriber Score Percent Prescriber Number
MYCIN 55 69 MYCIN 0
Faculty-5 54 68 Faculty-5 1
Fellow 53 66 Fellow 1
Faculty-3 51 64 Faculty-3 1
Faculty-2 49 61 Faculty-2 0
Faculty-4 47 59 Faculty-4 0
Actual RX 47 59 Actual RX 0
Faculty-1 45 56 Faculty-1 0
Resident 39 49 Resident 1
Student 28 35 Student 3
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the MYCIN knowledge base represents the combined expertise of some of the bes
medical minds available. Finally, MYCIN gave fewer drugs than the human experts and
thus did not overprescribe for the infections, Note: On the average MYCIN gave fewer
drugs than the human experts.

Another noteworthy aspect of this evaluation is how little agreement there was among
human experts concerning the correctness of diagnoses. Even the best of the diagnosti-
cians failed to receive a unanimous endorsement from the evaluators. This observatior
underscores the extent to which human expertise is still largely heuristic.

These positive evaluation results do not mean that MYCIN is now ready to set up &
medical practice and take on patients. In fact, MYCIN is not used for delivering medica!
care, There are several important reasons. First and most important, the rules (approxi-
mately 600 of them) did not give a speedy response in the doctor-computer interaction
Each session with the computer lasted about 0.5 h and required, as can be seen from the
trace presented above, a good amount of typing.

Second, the program was ‘‘locked into’* the particular part of its graph seatch for
response to questions. It was not able to extrapolate to other situations or previous
patients, but remained strictly within the nodes and links of the graph it was evaluating

Third, MYCIN's explanations were limited: When the doctor expected a deep medica’
justification for some. particular result—a physiological or antibacterial justification.
say—MYCIN simply returned the *‘condition action plus certainty factor”” relationshir
contained in its rule base. It is difficult for an expert system to relate its heuristic know.-
edge to any deeper understanding of the problem domain. For example, MYCIN does nc:
really understand human physiology; it simply applies rules to case-specific data. Folklore
has it that an early version of MYCIN, before recommending a particular drug, asked i1
the patient was pregnant, in spite of the fact that MYCIN had been told that the patien:
was male! Whether this actually happened or not, it does indicate the limitations of current
expert-system technology. Attempting to give expert systems the flexibility and deeper
understanding demonstrated by human beings is an important and open area of research

Finally, unlike humans, who are extremely flexible in the way they apply knowledge.

expert systems do not ‘‘degrade gracefully’” when confronted with situations that do nct
fit the knowledge in their rule bases. That is, while a human can shift to reasoning from
first principles or to intelligent guesses when confronted with a new situation, exper:
systems simply fail to get any answer at all.

All these issues have meant that MYCIN does not enjoy common use in the medica!
feld. Nonetheless, it does serve as an archetype of this class of expert system, and man}
of its descendants, such as PUFF, are being used in clinical situations.

9.4.5 Knowledge Acquisition and the Teiresias Knowledge-Base Editor

Another one of the long-term goals of expert-systems research is to design software tha:
will allow the human expert to interact directly with the knowledge base to correct and

improve it. This is seen as a potential remedy for what has been called the knowledge

engineering bottleneck. This bottleneck is caused by the fact that building an expert
system generally requires a substantial commitment of time by both the domain expert and
the knowledge engineer. This contributes to the expense and complexity of building
expert systems. Both individuals tend to be highly paid professionals, and the loss ir
productivity caused by taking the domain expert away from other work during system
development can add to the cost of the project. Additional cost and complexity come from.
the effort needed to communicate the domain expert’s knowledge to the knowledge
engineer, the logistics of getting these two people together, and the complexity of the
programming required for an expert system.
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"

The obvious solution to this problem is to automate as much of the process as possible.
This has been done to a great extent through the development of expert-system shells and
znvironments that reduce the amount of programming required by the knowledge engi-
neer. However, these shells still require that the programmer understand the methodol-
ogies of knowledge representation and search. A more ambitious goal is to eliminate the
need for a knowledge engineer entirely. One way to accomplish this is to provide knowl-
edge-base editors that allow the domain expert to develop the program, interacting with
the knowledge base in terms that come from the problem domain and letting the software
handle the details of representation and knowledge organization. This approach has been
explored in an experimental program called Teiresias (5, 6], a knowledge-base editor
developed at Stanford University as part of the MYCIN project. We discuss the Teiresias
project in this section,

Another approach to the problem is to develop programs that can learn on their own
by refining their problem-solving efforts in response to feedback from the outside. These
approaches have been explored with varying degrees of success by the machine learning
community [16].

With the assistance of a knowledge-base editor, the domain expert can analyze the
performance of a knowledge base, find missing or erroneous rules, and correct the prob-
lem in a language appropriate to the expert’s way of thinking about the domain. The
knowledge-base editor designed for MYCIN is called Teiresias, after the blind seer of the
Greek tragedian Euripides. The name is altogether appropriate, as Teiresias was able to
see and describe the relations of the world without the (literal) gift of sight; similarly, this
software is able to understand relations in a knowledge base without (literally) under-
standing the referents of these relations.

Teiresias allows a doctor to step through MYCIN's treatment of a patient and locate
problems with its performance. Teiresias also translates the doctor's corrections into the
appropriate internal representations for the knowledge base. Thus Teiresias is able to
maintain the syntactic consistency of the knowledge base by updating all appropriate
program structures when new information is to be integrated into the knowledge base.

For example, MYCIN stores considerable knowledge in the form of tables. Certain
rules include LISP code that retrieves information from these tables, such as character-
istics of disease organisms. This improves the efficiency of the knowledge base, since a
single table can capture information that would require numerous rules to encode, How-
ever, if a new object, such as a disease organism, is added to the knowledge base, then
all tables that contain information about disease organisms must be updated to reflect this.

Semantic consistency is a more difficult problem, requiring knowledge of how well the
- knowledge base actually reflects the problem domain, Although Teiresias cannot be said
to truly maintain semantic consistency, it does make an effort to ensure that rules appear
consistent with one another. It does this by maintaining rule models, or statistical profiles
of all the rules. If a new rule is added to the knowledge base, Teiresias compares this new
rule with the rule model for all existing rules that draw the same conclusion, The as-
sumption is that rules that draw similar conclusions should examine similar conditions in
their premises. This enables Teiresias to detect potential inconsistencies in a new rule and
w0 prompt the user for corrections.

To illustrate Teiresias, we analyze its interaction with the doctor after MYCIN has
given its recommendations. The doctor disagrees with MYCIN’s result and with Teire-
sias’ help analyzes MYCIN's solution. The trace is a simulation taken from a session by
Stanford researchers, where the analysis is in italics, Teiresias’ questions are in regular
tvpe, and the doctor’s responses are in boldface type.

When a conclusion is given with which the doctor disagrees, the rule that drew this
conclusion is not necessarily wrong. A number of things could have happened, as Teir-
zsias correctly shows: A fact of the rule could have been improperly concluded; the rule
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might, in fact, be wrong; or another rule might be missing from the knowledge base.
Finding the cause of an error is a difficult problem that potentially requires examination
of the entire line of reasoning. Teiresias assists the physician in determining the problem
by maintaining an AND/OR graph of the solution process and working systematically
through this trace.

All rules are translated into an English language syntax that assists the physician in
understanding the trace. Once a problem is located, Teiresias lets the user add the missing
rule in the same simplified syntax, translating the rule into an internal representation and
checking the new rule for consistency with similar rules in the knowledge base.

MYCIN has reached a set of infections that it feels should be treated (as in the dialogue
of Sec. 9.4.3), These are presented to the physician, who disagrees with MYCIN’s
analysis:

My therapy recommendation will be based on the following probable
infections and potential causative organisms:

INFECTION-1 is PRIMARY BACTEREMIA

<item-1>E. COLI

<item-2>PSEUDOMONAS—-AERUGINOSA

Now Teiresias steps in:

Are all these identities correct?

No

Are there any identities missing?

Yos

Whioch ones?

KLEBSIELLA PNEUMONIAE, PROTEUS-NON-MIRABILIS

Are there any identities which shouldn't have appeared?

Yos

Which ones?

PSEUDOMONAS—AERUGINOSA

Do you want to

{1} track down the problem yourself, or

(2) allow me to guide the debugging, or

{3) ignore it for now and fix it another time
Type 1, 2, or 3

2

If the doctor had typed 1, he or she could have tried to sort out the problems with the
traditional why and how queries on the preceding solution. Note that Teiresias has
already begun to categorize the errors that appeared in the conclusions. Also note that the
three problems could well be related (perhaps to one missing rule). Teiresias starts by
trying to find out why the wrong organism appeared for treatment. . . .

The following rules were used in deducing that the identity of
ORGANISM-1 is PSEUDOMONAS—-AERUGINOSA.
RULE 184
Since
[1.1] The category of ORGANISM-1 is not known
[1.2] The gram stain of ORGANISM-1 is gram-negative
[1.3] The morphology of ORGANISM-1 is rod
[1.4] The aerobicity of ORGANISM-1 is facultative
There is weakly suggestive evidence (0.3) that the identity
of ORGANISM-1 is PSEUDOMONAS-AERUGINOSA.
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I3 this rule correct?
Taould its premise have failed in this case?
i€S

¥nich clause of the premise should have failed?
ciause 1

The expert feels the program should have been able to establish a category and that
ui¢ 184 should not have fired.

should it have been possible to conclude a category?
Tes
#nich one?
INTEROBACTERIACEAE
~here wore no rules sucocessfully oalled in the attempt to deduce
+his category. The following (potentially applicable) rules were NOT
sxecuted because the marked [++] clause failed:
RULE 116
If
(1) the identity of ORGANISM~l is not known
++(2) the gram stain of ORGANISM-1 is not known
(3) the morphology of ORGANISM-1 is not known
{(4) the site of CULTURE-1 is CSF
() the infection is meningitis
{6) the age of the patient is less than or equal to 2 months

Then
there is weakly suggestive evidence (0.33) that the
category of ORGANISM-1 is ENTEROBACTERIACEAE
RULE 050
If

(1) the morphology of ORGANISM-1 is rod

(2) the gram stain of ORGANISM-1 is gram-negative

(3) the aerobicity of ORGANISM-1 is facultative

++(4) infection ORGANISM-1 was acquired while the
patient was hospitalized
Then
there is suggestive evidence (0.7) that the category of
ORGANISM-1 is ENTEROBACTERIACEAE
Are all these rules correct?

Snould any of them have been successfully invoked?
Is there a rule missing?
fes
%ould you like to give me such a rule now?
fes
Food ...
If
1 *% THE PATIENT'S INFECTION IS PRIMARY—
BACTEREMIA
2 ** THE SITE IS ONE OF THE STERILE SITES
Then

#% THERE IS SUGGESTIVE EVIDENCE (0.8) THAT THE
CATEGORY IS ENTEROBACTERIACEAE
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Teiresias parses this rule into its internal representation and then translates it back
into English so the expert can check it. After the expert agrees on the parse, Teiresias
attempts to integrate the new rule into the knowledge base. . . .

I hate to criticize, Dr. Davis, but did you know that most rules

about what the category of an organism might be that mention:
the site of a culture, and
the infection

also mention:
the portal of entry of the organism?

Shall I try to write a clause to account for this?

Yes

How about:

the portal of entry is gastrointestinal. O0K?
Yes

Teiresias is itself a knowledge-based program with rules for reasoning about rules and
objects in a MYCIN knowledge base. As the above trace illustrates, the program sys-
tematically searches back along the trace of the reasoning to find the source of the
problem. Once this is done, it helps the user add to or cotrect the knowledge base. Using
the rule models discussed at the beginning of this section, Teiresias is able to check the
rule for consistency and to correct the missing premise.

To help the user add new information, Teiresias keeps a model of each class of object
that appears in the system. The model for a MYCIN object is called a schema. Each
schema describes how to create new instances of a class of objects such as a new disease
organism, drug, or test. The schema for a class of objects also describes how information
is to be obtained for rules of that class, e.g., to compute it from existing data, look it up.
or ask the user.

Schemata record the interrelationships of all classes of objects in the MYCIN rule
base. For example, if the addition of a new disease requires that a table of diseases and
their sensitivities to various drugs also be updated, this is recorded in the disease schema.
Schemata also include pointers to all cutrent instances of each schema. This is very
important if it is decided to change the form of the schema throughout the program,

Teiresias organizes its schemata into a hierarchy: A schema for describing bacterial -
infections may be a specification of a general class schema, which in turn is a specification
of a general schema for MYCIN facts. Each schema includes pointers to its parents and
children in this hierarchy.

Schemata also contain bookkeeping information. This includes the author and date of
creation and addition of each instance to the program. It includes a description of the
schema used to create it. Documentation of who created rules when-is critical for dis-
cussion and analysis of the knowledge base; when rules are primarily condition-action
pairs representing important aspects of an application domain and not full explications of
these relationships, it is important to be able to trace the rules back to their authors for -
more complete discussion of the factors underlying their creation.

The top-level structure in the hierarchy of Teiresias’ knowledge is the schema-schema.
This structure is a schema for creating new schemata, when, e.g., the domain expert
might wish to create a new category of objects. The schema-schema allows Teiresias to
reason about its own knowledge structures, including creating new ones when appropri-
ate. A schema-schema has the same basic structure as a schema itself and provides all the
bookkeeping information to reconstitute the entire knowledge base.

Although the development of commercial programs to help with knowledge acquisi-
tion is still in the future, Teiresias has shown how AND/OR graph search and knowledge
representation techniques provide a basis for automating knowledge-base refinement,
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9.5 EPILOGUE

4 number of references complement the material presented in this chapter; especially
~scommended is a collection of the original MYCIN publications from Stanford entitled
Rule-Based Expert Systems by Buchanan and Shortliffe [2].

Other important books on general knowledge engineering include Building Expert
Svstems by Hayes-Roth et al. [12], A Guide to Expert Systems by Waterman [23}, Expert
Systems: Concepts and Examples by Alty and Coombs {11, Expert Systems Technology:
4 Guide by Johnson and Keravnou (131, Expert Systems: Tools and Applications by
Harmon et al, [11}, and Expert Systems and Fuzzy Systems by Negoita {18].

Because of the domain specificity of expert-system solutions, case studies are an
‘mportant source of knowledge in the area. Books in this category include Expert Systems:
Techniques, Tools, and Applications by Klahr and Waterman [15], Competent Expert
Sustems: A Case Study in Fault Diagnosis by Keravnou and Johnson {14], The CRI
Directory of Expert Systems by Smart and Langeland-Knudsen [21], and Developments in
Expert Systems by Coombs [4].

A pait of more general books that give an overview of commercial uses of Al are The
4/ Business, edited by Winston and Prendergast [24], and Expert Systems: Artificial
Intelligence in Business by Harmon and King [10].
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